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Motivation

Instead of trying to produce a programme to simulate the adult mind, 
why not rather try to produce one which simulates the child’s?

Alan Turing, 1950. 



Motivation
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Ø Ex. supervised, reinforcement learning
Ø Need lots of data
Ø Not much (or right) generalization
Ø Pattern recognition, no account for causality 

Ø Little supervision or reinforcement
Ø Very little data
Ø Excellent generalization
Ø Ability to form causal predictions

Modern AI Frameworks 4-Year-Olds



Motivation
Explore-Exploit Tradeoff

Gopnik, A. (2020). Childhood as a solution to explore-exploit tensions. 
Philosophical Transactions B, 375. https://doi.org/10.1098/rstb.2019.0502

https://doi.org/10.1098/rstb.2019.0502


Previous	Study
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Liquin, E. & Gopnik, A. (2022). Children are more exploratory and learn more than adults in 
an approach-avoid task. Cognition, 218. https://doi.org/10.1016/j.cognition.2021.104940

https://doi.org/10.1016/j.cognition.2021.104940


Our	Approach:	What,	Why,	and	How
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Action

Reinforcement Learning Experiment Design

?

Nussenbaum, K. & Hartley, C. A. (2019). Reinforcement learning across development: What 
insights can we draw from a decade of research? Developmental Cognitive Neuroscience, 
40. https://doi.org/10.1016/j.dcn.2019.100733

https://intellabs.github.io/coach/_images/design.png
https://doi.org/10.1016/j.dcn.2019.100733


Reinforcement	Learning	(RL)	Model
Definition:	Q-Learning

Photo	Credit:	https://intellabs.github.io/coach/_images/design.png

Parameters	of	Interest										Learning	Rate	𝜶,	Inverse	Temperature	𝜷

Decision	Probability	 𝑷(𝒂|𝒔)𝒕 =
𝒆𝜷𝑸(𝒂,𝒔)𝒕

∑𝒂𝒊∈𝑨 𝒆
𝜷𝑸(𝒂𝒊,𝒔)𝒕

Value	Update	Mechanism 𝑸(𝒂, 𝒔)𝒕$𝟏= 𝑸(𝒂, 𝒔)𝒕 + 𝜶 𝒓𝒕 − 𝑸 𝒂, 𝒔 𝒕

https://intellabs.github.io/coach/_images/design.png


Reinforcement	Learning	(RL)	Model
Parameter	Estimation

4-5 years-old

/𝜶: 1.0

1𝜷: 0.536

6-7 years-old Adults

/𝜶: 1.0

1𝜷: 1.364

/𝜶: 0.819

1𝜷: 2.369

Parameter	Estimation										1𝜽 = argmax
𝜽

𝑷 𝑫 𝜽,𝑴)



Advanced	RL	Models
RL2a:	Positive	&	Negative	Learning	Rates	𝒂:, 𝒂;

𝑸(𝒂, 𝒔)𝒕 + 𝜶$ 𝒓𝒕 − 𝑸 𝒂, 𝒔 𝒕 𝒓𝒕 ≥ 𝟎

𝑸(𝒂, 𝒔)𝒕 + 𝜶' 𝒓𝒕 − 𝑸 𝒂, 𝒔 𝒕 𝒓𝒕 < 𝟎𝑸(𝒂, 𝒔)𝒕$𝟏=	

Cazé, R.D., van der Meer, M.A.A. (2013). Adaptive properties of differential learning rates 
for positive and negative outcomes. Biol Cybern, 107, 711-719. 
https://doi.org/10.1007/s00422-013-0571-5

? =

? =

https://doi.org/10.1007/s00422-013-0571-5


Advanced	RL	Models
RL-2D:	Dimension-based	Value	Functions

Color-Pattern	Value	Functions 𝑸𝒄𝒐𝒍𝒐𝒓, 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏

Joint	Value	Function 𝑸 𝒂, 𝒔 = 𝑸𝒄𝒐𝒍𝒐𝒓 𝒂, 𝒔 × 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏(𝒂, 𝒔)1

Credit	to	Fei	Dai	(University	of	California,	San	Diego)	for	idea	towards	joining	the	two	value	functions.	



Advanced	RL	Models
RL-2D:	Dimension-based	Value	Functions

Credit	to	Fei	Dai	(University	of	California,	San	Diego)	for	idea	towards	joining	the	two	value	functions.	

RL-2D2a:	2-D	with	Dimension	Learning	Rates	𝒂𝒄𝒐𝒍𝒐𝒓, 𝒂𝒑𝒂𝒕𝒕𝒆𝒓𝒏

𝑸𝒄𝒐𝒍𝒐𝒓(𝒂, 𝒔)𝒕$𝟏 = 𝑸𝒄𝒐𝒍𝒐𝒓(𝒂, 𝒔)𝒕 + 𝒂𝒄𝒐𝒍𝒐𝒓 𝒓𝒕 − 𝑸𝒄𝒐𝒍𝒐𝒓 𝒂, 𝒔 𝒕

𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏(𝒂, 𝒔)𝒕$𝟏 = 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏(𝒂, 𝒔)𝒕 + 𝒂𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒓𝒕 − 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝒂, 𝒔 𝒕

Color-Pattern	Value	Functions 𝑸𝒄𝒐𝒍𝒐𝒓, 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏

Joint	Value	Function 𝑸 𝒂, 𝒔 = 𝑸𝒄𝒐𝒍𝒐𝒓 𝒂, 𝒔 × 𝑸𝒑𝒂𝒕𝒕𝒆𝒓𝒏(𝒂, 𝒔)1



Model	Comparison

𝐴𝐼𝐶 = 2𝑘 − 2 ln(+𝐿)
𝑘 = number of estimated parameters in the model
H𝐿 = maximum value of the likelihood function for the model
𝑛 = number of observations 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(+𝐿)
Akaike Information Criterion Bayesian Information Criterion



Model	Comparison:	Best	Models	

𝑨𝑰𝑪 4-5 y/o’s 6-7 y/o’s Adults

Baseline 709.78 709.78 1063.29

RL 583.72 464.93 561.46

RL2a 460.48 397.43 528.48

RL-2D 414.84 567.88 654.79

RL2a-2D 316.09 408.94 524.81

RL-2D2a 416.84 568.38 639.81

RL2a-2D2a 317.91 405.29 517.06
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Model	Comparison:	Best	Models

4-5 years-old

RL2a-2D

v 𝜷:	3.497

v 𝜶$: 0.663

v 𝜶':	0.01		

6-7 years-old

RL2a

v 𝜷:	2.223

v 𝜶$: 1.0

v 𝜶':	0.01		

Adults

RL2a-2D2a

v 𝜷:	5.437

v 𝜶$,𝐜𝐨𝐥𝐨𝐫: 0.572

v 𝜶',𝐜𝐨𝐥𝐨𝐫: 0.043

v 𝜶$,𝒑𝒂𝒕𝒕𝒆𝒓𝒏:	0.428	

v 𝜶' 𝒑𝒂𝒕𝒕𝒆𝒓𝒏: 0.124	



Model	Performance	vs.	Human
Proportion	of	Approach-Avoid	(Humans)



Model	Performance	vs.	Human
Proportion	of	Approach-Avoid	(Models)



Model	Performance	vs.	Human
Proportion	of	Approach-Avoid	(Humans)



Model	Performance	vs.	Human
Change	in	Cumulative	Positive	Reward



Model	Performance	vs.	Human
Change	in	Cumulative	Net	Reward



Results
Best-Fit	Model	for	Adult	(RL2a-2D2a)

β 𝜶$,𝒄𝒐𝒍𝒐𝒓 𝜶$,𝒑𝒂𝒕𝒕𝒆𝒓𝒏 𝜶',𝒄𝒐𝒍𝒐𝒓 𝜶',𝒑𝒂𝒕𝒕𝒆𝒓𝒏
Adults 5.437 0.572 0.428 0.043 0.124

RL2a-2D2a

𝜶',𝒑𝒂𝒕𝒕𝒆𝒓𝒏 > 𝜶',𝒄𝒐𝒍𝒐𝒓 suggests that the participants are more sensitive to 
negative reward associated with the pattern than color. 

A sensitivity to negative stimuli on pattern is consistent with how more adults 
conform to a one-dimensional pattern rule since early generalization means 
they will grow avoidant to objects based on their pattern. 



Conclusion	&	Future	Works
Ø Despite popular comparisons between reinforcement learning and 

human learning, our models struggle to replicate the behavior of their 
human counterparts particularly in terms of negative stimulus. 

Ø As a future direction, we will consider components that capture 
curiosity or directed exploration. It appears that the more 
exploratory human participants are conducting a strategic search to 
obtain information, which cannot be captured by our inverse 
temperature 𝛽 parameter. 

Ø We may also explore the use of Bayesian paradigms rather than RL 
paradigms, which allows us to consider the reinforcement process 
as one of updating prior beliefs. 
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Questions?	

Happy	to	discuss	more	during	the	poster	session	or	over	email!	

Email:	kai.hung@rice.edu

mailto:kai.hung@rice.edu

