# Computational Modeling for Approach-Avoid Task with Reinforcement Learning Frameworks



Kai Hung<sup>1</sup>, Eunice Yiu<sup>2</sup>, Alison Gopnik Ph.D<sup>2,3</sup>

Department of Computer Science, Rice University
Department of Psychology, University of California, Berkeley
Berkeley Artificial Intelligence Research

Supported by NSF SUPERB REU Program

## Outline

- Motivation
- Previous Work & Experiment Set-Up
- > Our Approach: What, Why, and How
- Model Formulation
- Model Comparison
- Results
- Conclusion
- Future Works
- Acknowledgements



### Motivation

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child's?

Alan Turing, 1950.

## Motivation

### **Modern AI Frameworks**



Photo Credit: Shutterstock

### > Ex. supervised, reinforcement learning

- Need lots of data
- Not much (or right) generalization
- Pattern recognition, no account for causality

#### 4-Year-Olds



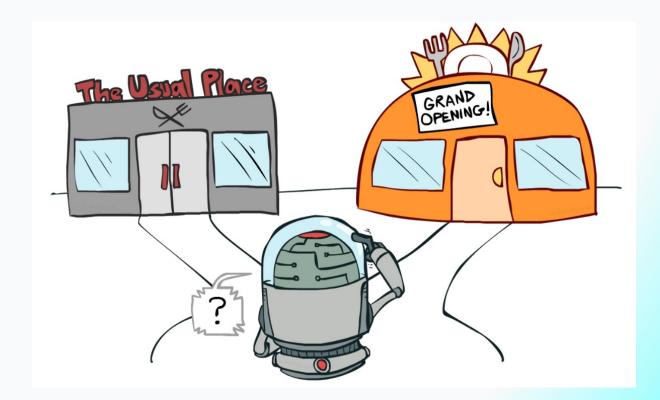
Photo Credit: Raising Children Network

- Little supervision or reinforcement
- Very little data
- Excellent generalization
- Ability to form causal predictions

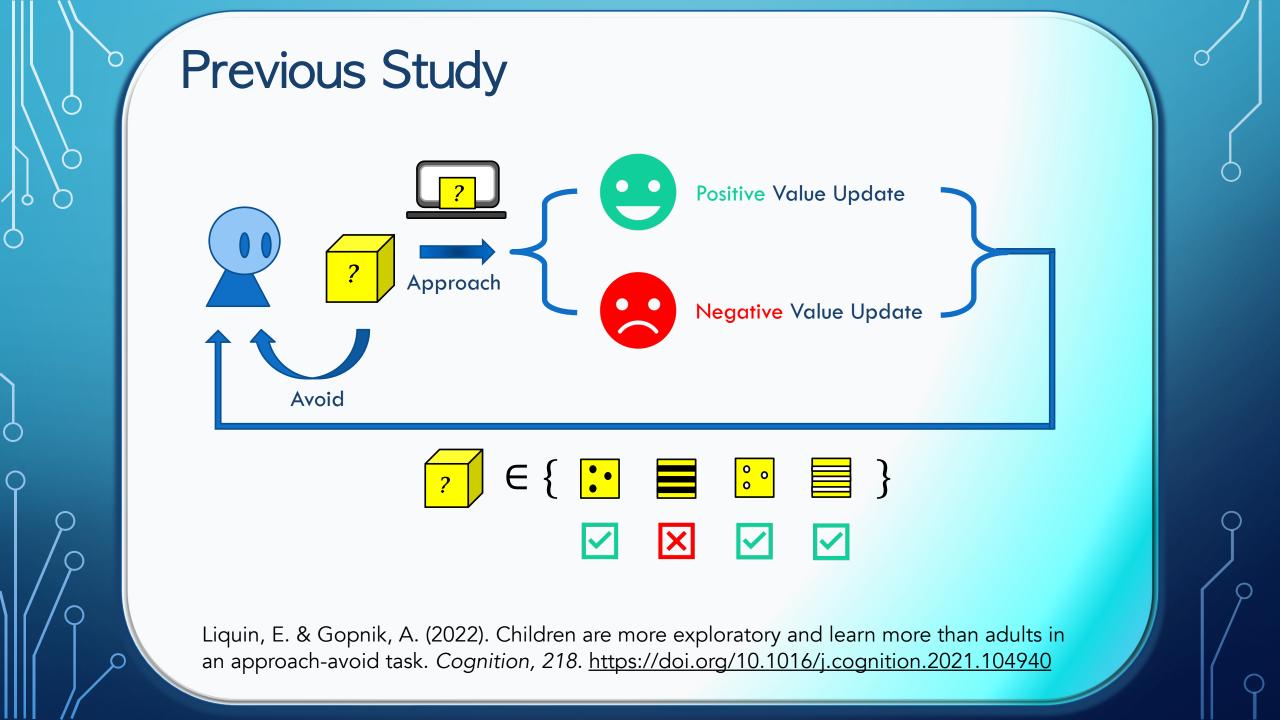


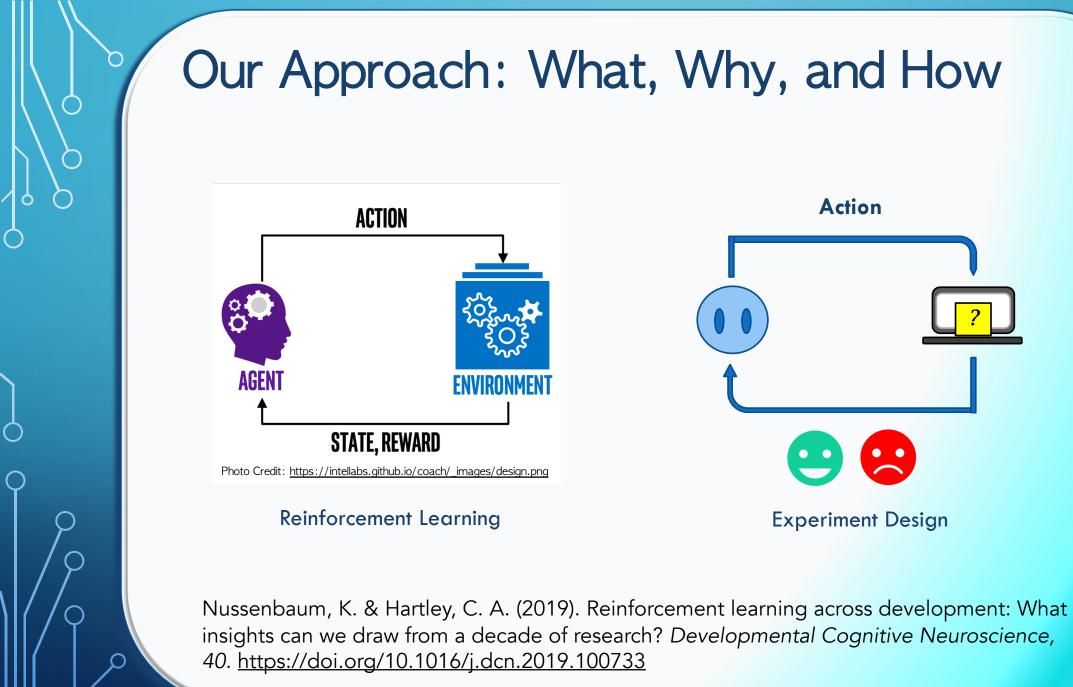
## Motivation

### Explore-Exploit Tradeoff

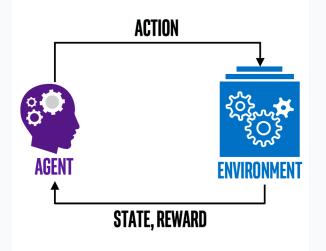


Gopnik, A. (2020). Childhood as a solution to explore-exploit tensions. *Philosophical Transactions B*, 375. <u>https://doi.org/10.1098/rstb.2019.0502</u>





### Reinforcement Learning (RL) Model Definition: Q-Learning



Value Update Mechanism

Decision Probability

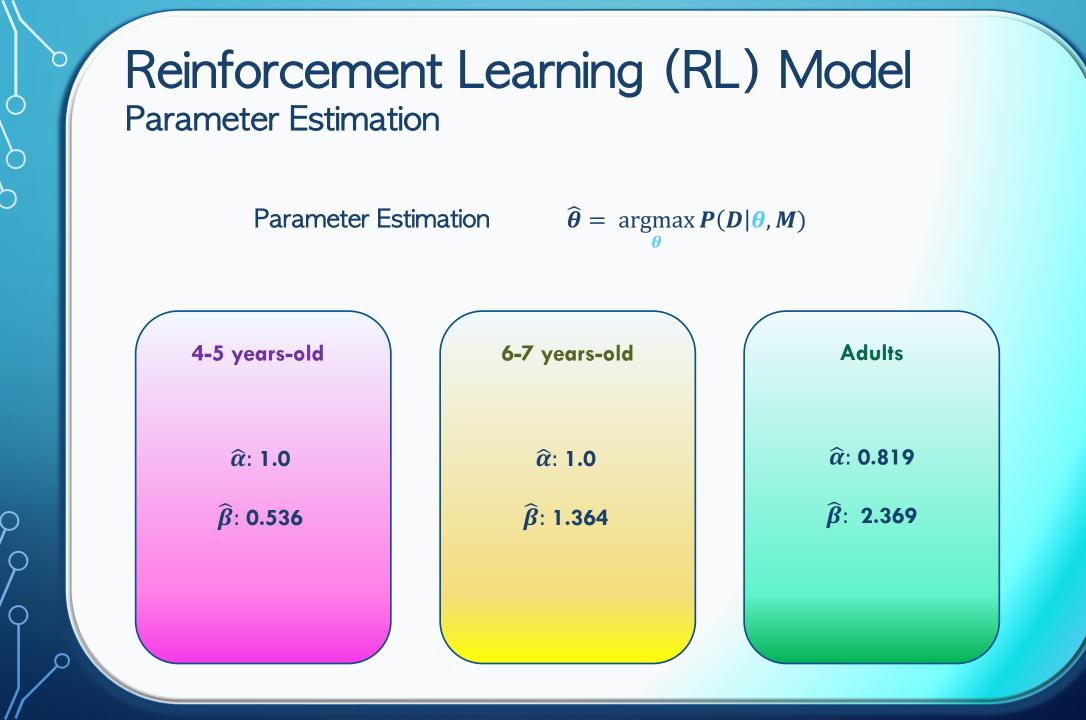
 $Q(a,s)_{t+1} = Q(a,s)_t + \alpha [r_t - Q(a,s)_t]$ 

$$P(a|s)_t = \frac{e^{\beta Q(a,s)_t}}{\sum_{a_i \in A} e^{\beta Q(a_i,s)_t}}$$

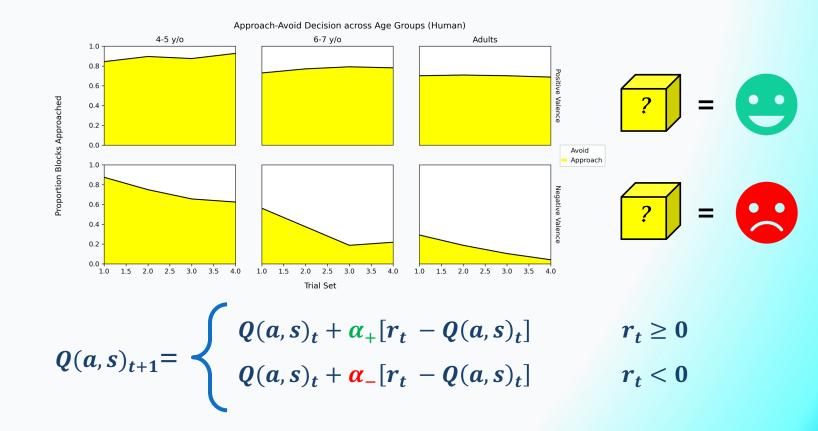
Parameters of Interest

Learning Rate  $\alpha$ , Inverse Temperature  $\beta$ 

Photo Credit: https://intellabs.github.io/coach/\_images/design.png



### Advanced RL Models RL2a: Positive & Negative Learning Rates $a_+, a_-$



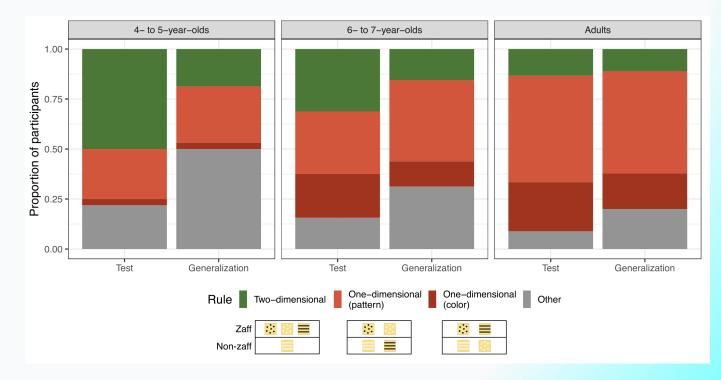
Cazé, R.D., van der Meer, M.A.A. (2013). Adaptive properties of differential learning rates for positive and negative outcomes. *Biol Cybern*, 107, 711-719. <u>https://doi.org/10.1007/s00422-013-0571-5</u>

### Advanced RL Models RL-2D: Dimension-based Value Functions

Color-Pattern Value Functions

 $Q_{color}, Q_{pattern}$ 

Joint Value Function  $Q(a, s) = Q_{color}(a, s) \times Q_{pattern}(a, s)^{1}$ 



Credit to Fei Dai (University of California, San Diego) for idea towards joining the two value functions.



Color-Pattern Value Functions  $Q_{color}, Q_{pattern}$ 

Joint Value Function  $Q(a, s) = Q_{color}(a, s) \times Q_{pattern}(a, s)^{1}$ 

### RL-2D2a: 2-D with Dimension Learning Rates a<sub>color</sub>, a<sub>pattern</sub>

 $Q_{color}(a,s)_{t+1} = Q_{color}(a,s)_t + a_{color}[r_t - Q_{color}(a,s)_t]$ 

 $Q_{pattern}(a,s)_{t+1} = Q_{pattern}(a,s)_t + a_{pattern}[r_t - Q_{pattern}(a,s)_t]$ 

Credit to Fei Dai (University of California, San Diego) for idea towards joining the two value functions.

## Model Comparison

Akaike Information Criterion

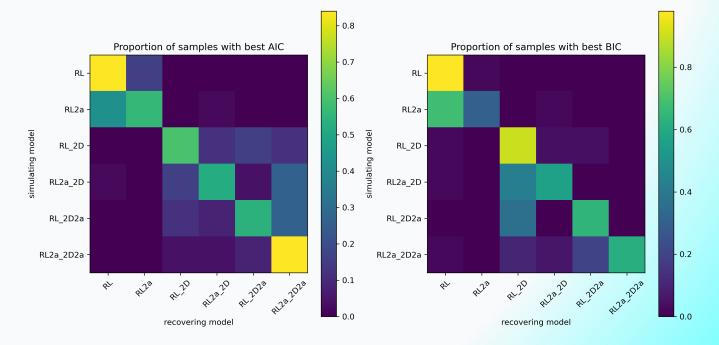
 $AIC = 2k - 2\ln(\hat{L})$ 

Bayesian Information Criterion

 $BIC = k \ln(n) - 2 \ln(\hat{L})$ 

- k = number of estimated parameters in the model
- $\hat{L} = maximum$  value of the likelihood function for the model

n = number of observations



# Model Comparison: Best Models

| AIC       | 4-5 y/o's | 6-7 y/o's | Adults  |
|-----------|-----------|-----------|---------|
| Baseline  | 709.78    | 709.78    | 1063.29 |
| RL        | 583.72    | 464.93    | 561.46  |
| RL2a      | 460.48    | 397.43    | 528.48  |
| RL-2D     | 414.84    | 567.88    | 654.79  |
| RL2a-2D   | 316.09    | 408.94    | 524.81  |
| RL-2D2a   | 416.84    | 568.38    | 639.81  |
| RL2a-2D2a | 317.91    | 405.29    | 517.06  |

# Model Comparison: Best Models

| AIC       | 4-5 y/o's           | 6-7 y/o's           | Adults              |
|-----------|---------------------|---------------------|---------------------|
| Baseline  | 709.78              | 709.78              | 1063.29             |
| RL        | 583.72              | 464.93              | 561.46              |
| RL2a      | 460.48              | <mark>397.43</mark> | 528.48              |
| RL-2D     | 414.84              | 567.88              | 654.79              |
| RL2a-2D   | <mark>316.09</mark> | 408.94              | 524.81              |
| RL-2D2a   | 416.84              | 568.38              | 639.81              |
| RL2a-2D2a | 317.91              | 405.29              | <mark>517.06</mark> |

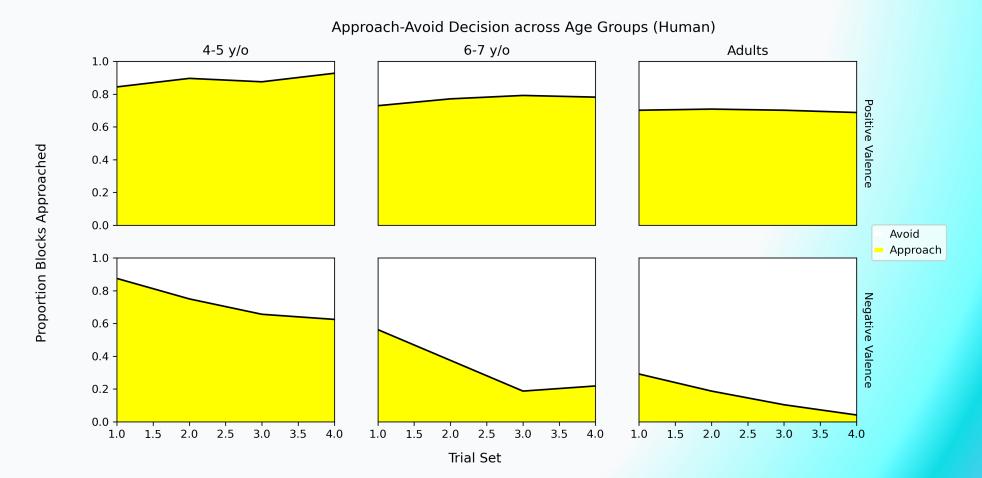
# Model Comparison: Best Models

| 4-5 years-old            |
|--------------------------|
| RL2a-2D                  |
|                          |
| * α <sub>+</sub> : 0.663 |
| * α_: 0.01               |
|                          |

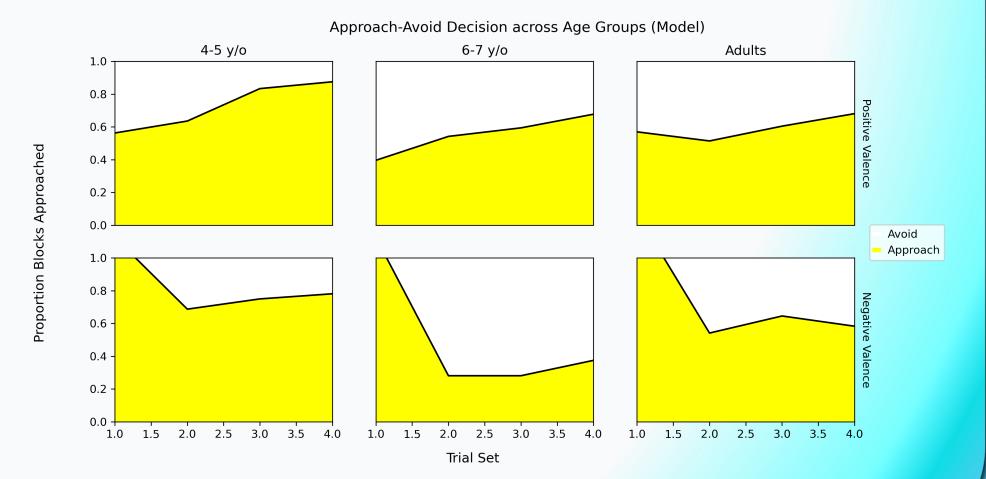
| 6-7 years-old |  |
|---------------|--|
| RL2a          |  |
| β: 2.223      |  |
|               |  |
| * α_: 0.01    |  |
|               |  |
|               |  |
|               |  |

Adults RL2a-2D2a **\*** *β*: 5.437 \*  $\alpha_{+,color}$ : 0.572 \*  $\alpha_{-,color}: 0.043$ \*  $\alpha_{+,pattern}$ : 0.428 \*  $\alpha_{-pattern}$ : 0.124

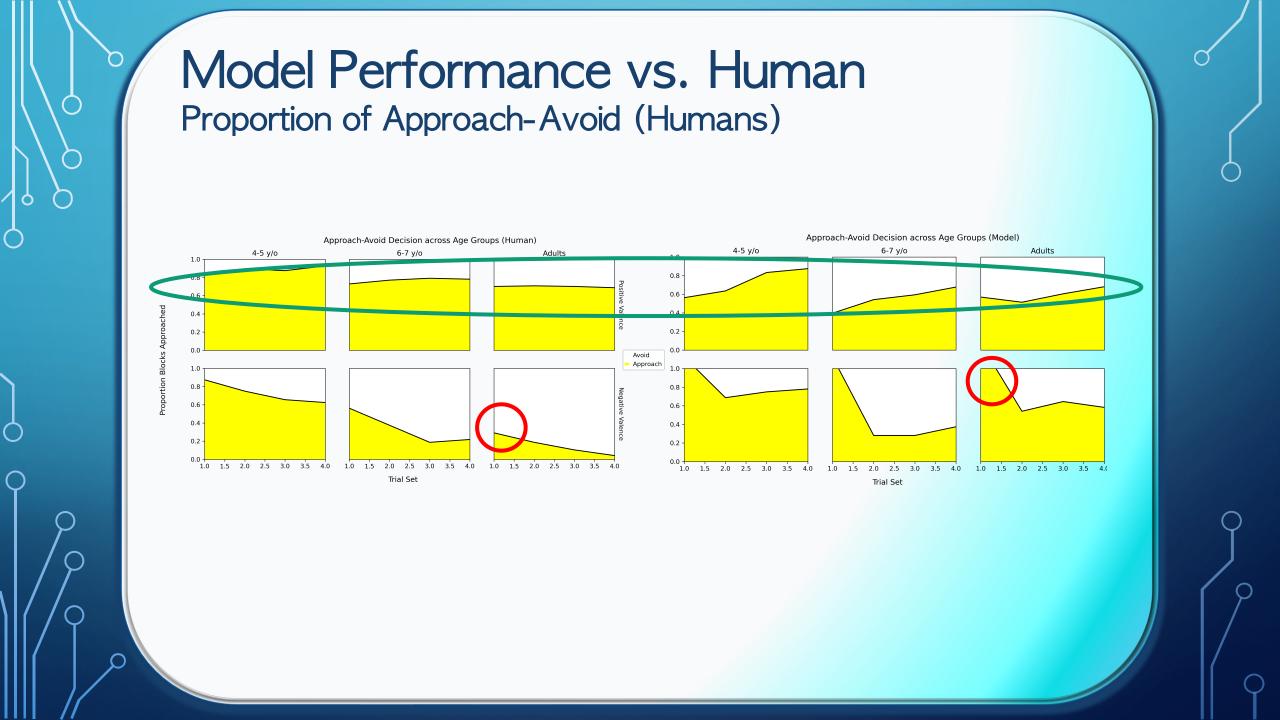
### Model Performance vs. Human Proportion of Approach-Avoid (Humans)



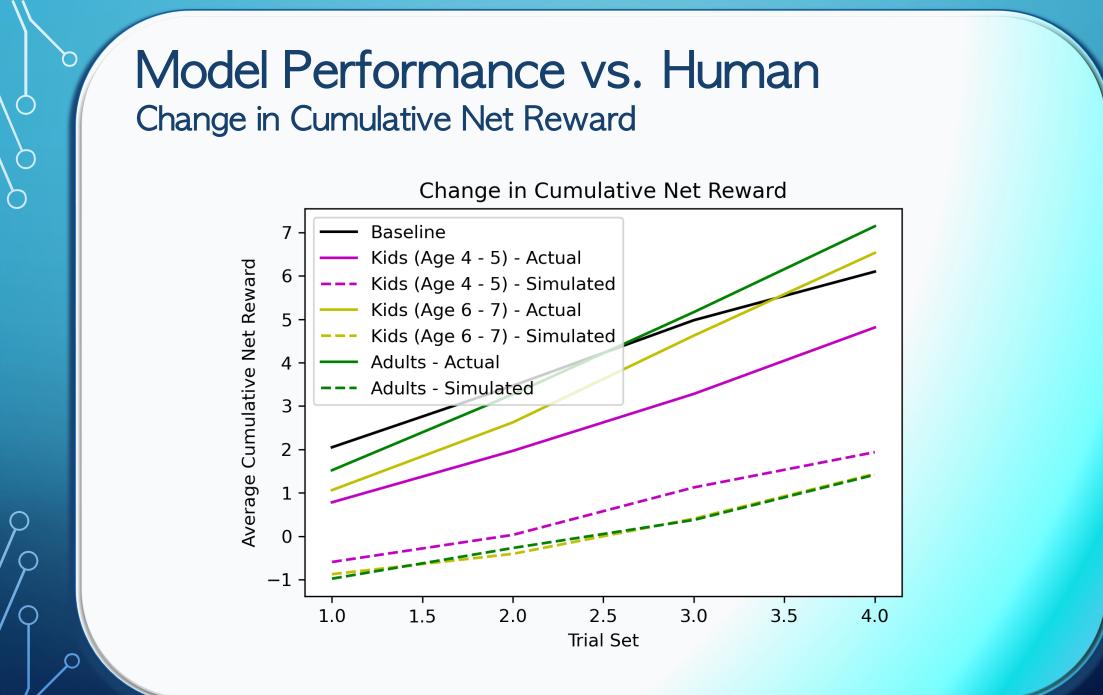
### Model Performance vs. Human Proportion of Approach-Avoid (Models)



 $\frown$ 



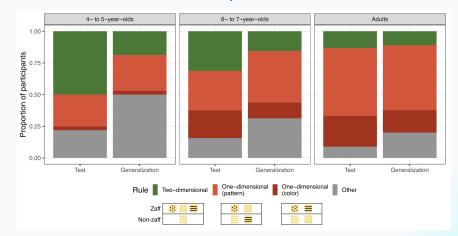
### Model Performance vs. Human Change in Cumulative Positive Reward Change in Cumulative Positive Reward Baseline **Cumulative Positive Reward** 10 Kids (Age 4 - 5) - Actual Kids (Age 4 - 5) - Simulated Kids (Age 6 - 7) - Actual 8 Kids (Age 6 - 7) - Simulated Adults - Actual Adults - Simulated 6 4 -Average 2 1.5 2.5 3.0 3.5 4.0 1.0 2.0 Trial Set





|        | RL2a-2D2a |                    |                      |                    |                      |
|--------|-----------|--------------------|----------------------|--------------------|----------------------|
|        | β         | $\alpha_{+,color}$ | $\alpha_{+,pattern}$ | $\alpha_{-,color}$ | $\alpha_{-,pattern}$ |
| Adults | 5.437     | 0.572              | 0.428                | <mark>0.043</mark> | <mark>0.124</mark>   |

 $\alpha_{-,pattern} > \alpha_{-,color}$  suggests that the participants are more sensitive to negative reward associated with the pattern than color.



A sensitivity to negative stimuli on pattern is consistent with how more adults conform to a one-dimensional pattern rule since early generalization means they will grow avoidant to objects based on their pattern.

# Conclusion & Future Works

- Despite popular comparisons between reinforcement learning and human learning, our models struggle to replicate the behavior of their human counterparts particularly in terms of negative stimulus.
- As a future direction, we will consider components that capture curiosity or directed exploration. It appears that the more exploratory human participants are conducting a strategic search to obtain information, which cannot be captured by our inverse temperature β parameter.
- We may also explore the use of Bayesian paradigms rather than RL paradigms, which allows us to consider the reinforcement process as one of updating prior beliefs.

# Acknowledgements

Thank you to our program director, Leslie Mach<sup>1</sup>, for coordinating and the National Science Foundation for funding this research opportunity at the University of California, Berkeley.

Thank you to Fei Dai<sup>2, 3</sup>, David Chan<sup>1</sup>, and Milena Rmus<sup>2</sup> for suggestions and help in refining the computational models during the early stages of this project.

I would also like to thank Dr. Alison Gopnik<sup>2</sup>, Rose Reagan<sup>2</sup>, Dr. Benjamin Pitt<sup>2</sup>, other members of the Gopnik Cognitive Development & Learning Lab<sup>2</sup>, and all the graduate student mentors from BAIR (Brent, Leyla, Ruchir, Rudy) for a welcoming and fun research environment.

Lastly, the project and my summer could not be this fruitful without the continuous mentorship and support of my mentor, Eunice Yiu<sup>2</sup>. My time would also be incomplete without the friendship of my fellow SUPERB cohort.

- 1. Department of Electrical Engineering and Computer Science, University of California, Berkeley
- 2. Department of Psychology, University of California, Berkeley
- 3. Department of Computer Science, University of California, San Diego

# Questions?

Happy to discuss more during the poster session or over email!

Email: <u>kai.hung@rice.edu</u>